
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1872021 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 140

EXPERIMENTAL ANALYSIS OF OPEN SOURCE

PROJECTS FOR COST ESTIMATION USING

DATA PRE-PROCESSING AND LEARNING

TECHNIQUES

1Prabujeet Kaur, 2Dharmendra Lal Gupta
1M.Tech Scholar, 2Associate Professor

1Department of Computer Science and Engineering, Kamla Nehru Institute of Technology, Sultanpur, Uttar Pradesh,

India
2Department of Computer Science and Engineering, Kamla Nehru Institute of Technology, Sultanpur, Uttar Pradesh,

India

I. INTRODUCTION

Software metrics help the researchers or the users to identify the quality of the software. The software costs increases drastically

when the software is of good quality. Software project managers must assess the cost or effort needed for creating the software at a

beginning time of its life-cycle [42]. The capacity to precisely evaluate the development cost assumes an imperative part in the

success of software systems. Software engineers utilize these metrics to investigate whether the quality can be enhanced. Mostly

all software systems are bigger in size where some classes are large and some classes are small to smaller in size and complexity.

And small classes may likewise require less time for exploring their quality. Therefore, software engineers need to distribute their

assets or resources effectively just to those parts of the software’s which require more efforts.

Various analysis tools and metrics data are available easily. Data mining is a strategy which is utilized to group the modules or

instances into defective or not defective through metric value [1, 2, 3, 4, 5, 6, 7 and 8]. Software quality assessed by utilizing

different data mining tools may not generally give great outcome if the quality of the data is low like noise [9] and class imbalance

[10]. Hence, at times preprocessing is required before predicting the nature or the quality of software.

In this research, most conspicuous metrics are chosen through data pre-processing. Furthermore, for this, Wrapper subset

technique has been utilized which came about into various different metric subsets for different projects. Further, faulty instances

which were less complex were filtered out and removed from each dataset. Three filters were proposed for removal viz. 10, 20 and

30% of less complex faulty data. The general structure of the paper is: Section 2 talks about the related work for cost estimation in

software. Section 3 talks about the research methodology utilized for this research. Section 4 speaks

about the outcomes of this research on four classification algorithms and also the correlation with the performance of [40] has also

been discussed. Finally, Section 6 prompts conclusion and future extent of the research.

II. REALTED WORK

Fault prediction and Cost Estimation models confront numerous troubles like data quality and in addition class imbalance issue

[11]. Therefore, many researchers have presented diverse techniques for data preprocessing which can enhance the prediction

procedure.

Boetticher G [12] applied data pre-processing by the removal of replicated instances from NASA datasets.

Schro¨ter A, Zimmermann T and Zeller A [13] took 52 diverse ECLIPSE modules, led data pre-processing and chose the

dataset from the defective parts as it were.

Kim S, Zimmermann T, Whitehead E and Zeller A [14], the authors presumed that lone 10% of modules represent over 73%

of defects in seven open-source projects.

Abstract: To achieve software quality for large systems is very difficult. Developers and testers put a lot of their effort to evaluate the software

quality which turns out to be very time consuming process. The software quality can be accessed through fault prediction or cost estimation and

many more. Various studies have been carried out for various kinds of prediction processes. In each of which, machine learning techniques are

used for prediction purposes. In this research, feature selection and data preprocessing techniques has been carried out. In this Wrapper subset

evaluation method has been chosen for attribute selection. After attribute selection process, 10, 20 and 30 % of less complex faulty instances

were filtered out form each selected attribute. Later, the resultant datasets were processed against four classifiers: Naïve Bayes, Support Vector

Machine, k nearest neighbors and C4.5 Decision trees. Cost estimation against each attribute was calculated. Lastly, the calculated result was

compared against the cost estimation of filtering out of less complex instances for LOC and NPM metrics. And through comparison, the research

show that the Classifiers based on Wrapper subset evaluation method gave better results than filtering out of less complex instances for LOC

and NPM metrics.

Index Terms: Software fault; cost estimation; data preprocessing; feature selection; complexity

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1872021 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 141

Jiang Y, Cukic B and Ma Y [15] have tried the effect of two procedures, log and discretization change on ten classifier

algorithms. In any case, the authors couldn't locate any dominant method.

In another investigation, Gyimothy T, Ferenc R and Siket I [1] has recognized a relationship between the most basic parts of

the code and cost of testing these parts utilizing various models.

Liebchen GA and Shepperd M [16] have revealed that exclusively 23 out of 100 fault prediction studies thinks about the quality

of data while numerous models were built without data cleaning (Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P and

Witten I [25]).

Gray D, Bowes D, Davey N, Sun Y and Christianson B [17] have led data pre-processing on NASA datasets and have removed

6 to 90% of the original data utilizing different cleaning procedures.

Catal C, Alan O and Balkan K [9] have utilized thresholds system to distinguish two kinds of instances as noisy. A non-

defective instance is noisy if metric values are greater than their relating thresholds. A defective instance is noisy if metric values

are not as much as their relating thresholds.

Gao K, Khoshgoftaar TM and Seliya N [18] conducted an empirical analysis by utilizing various sampling methodologies

thereafter utilized feature selection methodology so as to enhance the effectiveness of the prediction processes.

Al Dallal J [19] has examined the impact of extraordinary techniques like constructors, destructors, and access methods for

estimating the cohesion of classes. The outcomes indicated critical contrasts in cohesion measurements yet there were no huge

impacts on fault prediction process.

Shepperd M, Song Q, Sun Z and Mair C [20] have completed 18 referential integrity checks for data validity and discovered

tremendous measure of blunders in data. Data were ordered into problematic data and non problematic yet that does not help in

fault prediction processes. Problematic data have impossible values and non problematic data have repeated attributes.

Petric´ J, Bowes D, Hall T, Christianson B and Baddoo N [21] presented another checks for data integrity so as to clean NASA

datasets. They included two integrity checks along with the work of [20]; however, the authors have not done any fault prediction

although.

Erni K and Lewerentz C [22] proposed the usage of mean and standard deviation in order to find out two possible threshold

values, the minimum threshold viz. Tmin and the maximum threshold viz. Tmax. These threshold values are calculated as follows,

Tmin = l – s and Tmax = l ? s, being l the average of a metric and s the standard deviation

Jianglin Huang, Yan-Fu Li and Min Xie [41] contemplated the literature survey of data pre-processing procedures initially.

Thusly, an experimental analysis led to break down the effectiveness of 4 data pre-processing strategies. ANOVA test is led to

evaluate the hugeness of each pre-processing procedure and the interactions amongst them and machine learning techniques.

In this research, filtering was carried out to remove the less complex faulty instances out of the original data and have proved

to be cost-effective as well.

III. RESEARCH METHODOLOGY

Data quality is very important to enhance the prediction processes. An empirical investigation has been applied so as to watch

the effect of data pre-processing on the performance of fault prediction and cost estimation models.

3.1 Data Sources
This research involves different open source projects. They are available at [24] publically:

DATASET MODULES NFP% FP %

Eclipse JDT Core

www.eclipse.org/jdt/core
997 86% 14%

Equinox framework

www.eclipse.org/equinox/
324 60% 40%

Mylyn

www.eclipse.org/mylyn/
1862 87% 13%

Eclipse PDE UI

www.eclipse.org/pde/pde-ui/
1497 79% 21%

Apache Lucene

www.lucene.apache.org
691 91% 9%

3.2 Feature Selection
Before applying any data preprocessing technique, faeture selection has been done to identify the metrics which are more

prominent amongst all. For feature selection, Wrapper subset technique has been used with configuration as Naïve Bayes classifier

at 10 folds and 0.05 thresholds. And for searching, Best First search technique has been used. The resultant metrics were:

3.2.1 CBO: It is an aggregation of classes that are coupled to a solitary class [36].

3.2.2 NOA: It is an aggregation of attributes in a class; and at package level it is an aggregate number of attributes per class [38].

3.2.3 NMI: It is an aggregation of methods that are acquired by the child class from the parent class [37].

3.2.4 DIT: It is the greatest length from the hub or root of a tree to the node of a tree and it can be estimated as the aggregation

of ancestral classes [36].

3.2.5 NOC: It is an aggregation of quick sub-classes of a class [36].

3.2.6 NAI: It is the aggregation of attributes that are acquired by the child class from the parent class [37].

3.2.7 NPRIM: It is an aggregation of methods that are declared inside a class [37].

3.2.8 NPM: It is the aggregation of methods in a class that are declared as public [36].

3.2.9 FAN-IN: It is an aggregation of methods that call some other method [39].

3.2.10 FAN-OUT: It is an aggregation of methods that are called by another method [39].

http://www.ijcrt.org/
http://www.eclipse.org/jdt/core
http://www.lucene.apache.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1872021 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 142

3.3 Data Filtering
After getting all the features or metrics, we filtered out 10%, 20% and 30% of less complex faulty instances from each metric,

which resulted into 3 new datasets for each metric correspondingly.

3.4 Classification techniques and performance evaluation
The research includes four specific classifier algorithms viz. Naïve Bayes (NB), Support Vector Machine (SVM), k- nearest

neighbors (kNN), and C4.5 decision trees. Weka tool has been used for training and testing these classifiers [25].

Naive Bayes (NB) classification algorithm is widely used for prediction processes [26, 27]. It makes use of Bayesian network

that follows two assumptions. Firstly, all the metrics are independent completely where as the classes may be defective or non-

defective and secondly, hidden attributes can not affect the prediction method [28].

The SVM classification algorithm is a binary algorithm that keeps the margin at its maximum limit. The separator also called

hyper-plane. It is parallel and midway between the margin planes. Each margin plane goes through point(s) that have a place with

a specific class and is nearest to the margin plane of alternate class. The separation between these margin planes is known as margin.

One thing to make a note here is that numerous sets of margin planes can be possible with various margins. In any case, SVM finds

the margin which is at its most extreme point of confinement from both the sides of the hyper-plane. The points from each class

that go through the margin planes and are named as support vectors [35].

The k nearest neighbors (kNN) classification algorithm measures the separation or similarity between the modules utilizing

metric values and allocate modules to be either defective or non defective as indicated by the dominancy of the nearest group of

nodes [29]. The K value is generally set to be an odd and this research, uses k = 5. The k nearest neighbor’s classifier algorithm has

been utilized in various previous researches for prediction purposes [2, 30 and 31].

C4.5 decision tree classification algorithm uses information based approach viz. information gain to build the tree [32]. The

tree develops by choosing the metric value with the highest information. C4.5 decision tree classifier algorithm has been utilized in

various researches for prediction processes [33 and 34]. All the classification algorithms makes use of 10 fold cross-validations

[40].

3.5 Performance measures chosen for this research is:

3.5.1 Cost Estimation: False_Positives+True_Negatives

It can also be calculated from the confusion matrix.

IV. RESULT ANALYSIS

This analysis shows the measures for cost estimation in all the five projects at No filter, 10% filter, 20% filter and 30% filter,

which removes less complex faulty instances from the original data. The result and performance measure are discussed below.

Table 1: Cost Estimation measure of Eclipse JDT with No Filter

Table 2: Cost Estimation measure of Eclipse JDT with 10% filter

Eclipse JDT for 10% Filtering of faulty data

 NB SMO kNN C4.5

CBO 159 160 189 163

NOA 182 182 186 182

NMI 178 178 186 178

LOC [40] 205 207 193 207

NPM [40] 182 182 194 182

ECLIPSE JDT FOR NO FILTER

 NB SMO kNN C4.5

CBO 164 171 206 198

NOA 164 171 206 198

NMI 164 171 206 198

LOC [40] 211 213 211 216

NPM [40] 211 213 211 216

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1872021 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 143

Figure 1: Cost Estimation graph of Eclipse JDT with No Filter

In Table 1 and Figure 1 above, it shows that the Cost Estimation for Eclipse JDT with No filtering where CBO, NOA and NMI

gave much better result than LOC [40] and NPM [40] for all the four classification algorithms. Similarly the graphs for other Eclipse

JDT filters can also be constructed through the values in the tables below.

Table 3: Cost Estimation measure of Eclipse JDT with 20% filter
ECLIPSE JDT FOR 20% FILTERING OF FAULTY

DATA

 NB SMO kNN C4.5

CBO 150 145 172 150

NOA 159 159 165 159

NMI 161 155 162 155

LOC [40] 198 200 187 200

NPM [40] 167 170 181 170

Table 4: Cost Estimation measure of Eclipse JDT with 30% filter

ECLIPSE JDT FOR 30% FILTERING OF FAULTY

DATA

 NB SMO kNN C4.5

CBO 129 125 154 133

NOA 138 141 147 141

NMI 142 140 147 140

LOC [40] 197 198 185 198

NPM [40] 150 150 162 150

Table 5: Cost Estimation measure of Equinox with No filter

EQUINOX FOR NO FILTER

 NB SMO KNN C4.5

DIT 95 108 118 119

NOC 95 108 118 119

NAI 95 108 118 119

NPRIM 95 108 118 119

NPM 95 108 118 119

LOC [40] 96 107 124 123

NPM [40] 96 107 124 123

Table 6: Cost Estimation measure of Equinox with 10% filter

EQUINOX FOR 10% FILTERING OF FAULTY

DATA

 NB SMO kNN C4.5

DIT 108 108 108 108

NOC 108 110 107 108

NAI 114 109 121 114

NPRIM 113 100 118 115

NPM 114 104 117 113

0

50

100

150

200

250

CBO NOA NMI LOC

[40]

NPM

[40]

C
o

st
-E

st
im

a
ti

o
n

Eclipse JDT for NO Filter

NB

SMO

kNN

C4.5

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1872021 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 144

LOC [40] 120 91 126 120

NPM [40] 113 102 117 113

Table 7: Cost Estimation measure of Equinox with 20% filter

EQUINOX FOR 20% FILTERING OF FAULTY

DATA

 NB SMO kNN C4.5

DIT 90 90 90 90

NOC 94 97 94 94

NAI 98 93 107 98

NPRIM 104 91 111 105

NPM 97 83 98 95

LOC [40] 118 88 125 118

NPM [40] 113 96 116 113

Figure 2: Cost Estimation graph of Equinox with 20% filter

In Table 7 and Figure 2 above, it shows that the Cost Estimation for Equinox with 20% filtering out of less complex faulty

instances where DIT, NOC, NAI, NPRIM and NPM gave much better result than LOC [40] and NPM [40] for all the four

classification algorithms. Similarly the graphs for other Equinox filters can also be constructed through the values in the tables

below.

Table 8: Cost Estimation measure of Equinox with 30% filter

EQUINOX FOR 30% FILTERING OF FAULTY

DATA

 NB SMO kNN C4.5

DIT 77 77 77 77

NOC 81 83 81 81

NAI 85 80 94 85

NPRIM 90 76 96 91

NPM 89 65 86 83

LOC [40] 82 82 104 86

NPM [40] 104 104 105 111

Table 9: Cost Estimation measure of Lucene with No filter

LUCENE FOR NO FILTER

 NB SMO kNN C4.5

fanOut 62 62 64 62

LOC [40] 71 72 64 74

NPM [40] 71 72 64 74

Table 10: Cost Estimation measure of Lucene with 10% filter

LUCENE FOR 10% FILTERING OF FAULTY DATA

0

20

40

60

80

100

120

140

C
o

st
 E

st
im

a
ti

o
n

Equinox for 20% Filter

NB

SMO

kNN

C4.5

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1872021 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 145

 NB SMO kNN C4.5

fanOut 54 54 58 54

LOC [40] 61 68 61 68

NPM [40] 62 62 60 62

Figure 3: Cost Estimation graph of Lucene with 10% filter

In Table 10 and Figure 3 above, it shows that the Cost Estimation for Lucene with 10% filtering out of less complex faulty

instances where fanOut gave much better result than LOC [40] and NPM [40] for all the four classification algorithms. Similarly

the graphs for other Lucene filters can also be constructed through the values in the tables below.

Table 11: Cost Estimation measure of Lucene with 20% filter

LUCENE FOR 20% FILTERING OF FAULTY DATA

 NB SMO kNN C4.5

fanOut 47 47 51 47

LOC [40] 58 70 58 70

NPM [40] 59 59 56 59

Table 12: Cost Estimation measure of Lucene with 30% filter

LUCENE FOR 30% FILTERING OF FAULTY DATA

 NB SMO kNN C4.5

fanOut 43 45 45 45

LOC [40] 56 65 56 65

NPM [40] 54 54 51 54

Table 13: Cost Estimation measure of Mylyn with No filter

MYLYN FOR NO FILTER

 NB SMO kNN C4.5

fanIn 240 241 240 242

NAI 240 241 240 242

LOC [40] 276 272 248 275

NPM [40] 276 272 248 275

Table 14: Cost Estimation measure of Mylyn with 10% filter

MYLYN FOR 10% FILTERING OF FAULTY DATA

 NB SMO kNN C4.5

fanIn 221 221 216 221

NAI 217 217 221 217

LOC [40] 239 249 232 249

NPM [40] 228 228 228 228

Table 15: Cost Estimation measure of Mylyn with 20% filter

MYLYN FOR 20% FILTERING OF FAULTY DATA

 NB SMO kNN C4.5

fanIn 194 194 191 194

0

10

20

30

40

50

60

70

80

fanOut LOC [40] NPM [40]

C
o

st
 E

st
im

a
ti

o
n

Lucene for 10% Filter

NB

SMO

kNN

C4.5

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1872021 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 146

NAI 194 194 196 194

LOC [40] 216 239 212 239

NPM [40] 204 204 200 204

Table 16: Cost Estimation measure of Mylyn with 30% filter

MYLYN FOR 30% FILTERING OF FAULTY DATA

 NB SMO kNN C4.5

fanIn 172 172 168 172

NAI 168 168 172 168

LOC [40] 201 223 204 223

NPM [40] 177 179 275 179

Figure 4: Cost Estimation graph of Mylyn with 30% filter

In Table 16 and Figure 4 above, it shows that the Cost Estimation for Mylyn with 30% filtering out of less complex faulty

instances where fanIn and NAI gave much better result than LOC [40] and NPM [40] for all the four classification algorithms.

Similarly the graphs for other Mylyn filters can also be constructed through the values in the tables below.

Table 17: Cost Estimation measure of PDE with No filter

PDE FOR NO FILTER

 NB SMO KNN C4.5

NPRIM 209 209 209 209

LOC [40] 231 228 212 240

NPM [40] 231 228 212 240

Figure 5: Cost Estimation graph of PDE with No filter

In Table 17 and Figure 5 above, it shows that the Cost Estimation for PDE with No filtering where NPRIM gave much better

result than LOC [40] and NPM [40] for all the four classification algorithms. Similarly the graphs for other PDE filters can also be

constructed through the values in the tables below.

Table 18: Cost Estimation measure of PDE with 10% filter

PDE FOR 10% FILTERING OF FAULTY DATA

 NB SMO kNN C4.5

NPRIM 187 187 188 187

LOC [40] 209 218 201 218

0

50

100

150

200

250

300

fanIn NAI LOC [40]NPM [40]

C
o

st
 E

st
im

a
ti

o
n

Mylyn for 30% Filter

NB

SMO

kNN

C4.5

190

200

210

220

230

240

250

NPRIM LOC [40] NPM [40]

C
o

st
 E

st
im

a
ti

o
n

PDE for NO Filter

NB

SMO

kNN

C4.5

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1872021 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 147

NPM [40] 186 186 182 186

Table 19: Cost Estimation measure of PDE with 20% filter

PDE FOR 20% FILTERING OF FAULTY DATA

 NB SMO kNN C4.5

NPRIM 166 166 167 166

LOC [40] 196 211 193 211

NPM [40] 162 162 158 162

Table 20: Cost Estimation measure of PDE with 30% filter

PDE FOR 30% FILTERING OF FAULTY DATA

 NB SMO kNN C4.5

NPRIM 147 150 149 150

LOC [40] 188 207 186 207

NPM [40] 144 144 141 144

In the above result analysis, we have shown the Cost Estimation measures of all the five projects. We have shown the measure

of Cost Estimation for each project in a tabular form and also have constructed a graph of five tables randomly (one for each kind

of project). Likewise the graphs for all the measures of all the 16 remaining tables can be constructed through the values in the

tables above. One can analyze from all the tables itself that the Cost Estimation measure of our study gave the better results in most

of the cases than the work of [40] and can see it graphically by constructing the graphs for the same.

V. CONCLUSION AND FUTURE SCOPE

Feature selection technique has been applied before data pre-processing. Feature selection has been applied to identify the

features or metrics which are more prominent amongst all. For this, Wrapper subset technique has been applied with its

configuration as Naïve Bayes classification algorithm at 10 folds and 0.05 thresholds. For searching purposes, Best First search

method has been utilized. Data pre-processing has been done on the resultant metrics of the feature selection method. In this,

filtering out of 10%, 20% and 30% of less complex faulty instances on each metric, which resulted into the creation of 3 new

datasets for each metric. Further, this research uses four classification algorithm viz. Naïve Bayes (NB), Support Vector Machine

(SVM), k- nearest neighbors (kNN), and C4.5 decision trees for carrying out the prediction of cost. On all these classifiers we have

evaluated the Cost Estimation measures against each metric. And it has been found that the Cost estimation obtained through our

research is much better than the work of [40].

And in future, we wish to expand our study to deal with class imbalance issue and then perform the same working on the

balanced data and analyze that result.

VI. REFERENCES

[1] Gyimothy T, Ferenc R, Siket I, 2005. Empirical validation of object oriented metrics on open source software for fault

prediction. IEEE Trans Softw Eng. Volume 31(10), pp. 897–910.

[2] Zhou Y, Leung H, 2006. Empirical analysis of object-oriented design metrics for predicting high and low severity faults. IEEE

Trans Softw Eng. Volume 32(10), pp. 771–789.

[3] Shatnawi R, 2010. A quantitative investigation of the acceptable risk levels of object-oriented metrics in open-source systems.

IEEE Trans Softw Eng. Volume 36(2), pp. 216–225.

[4] Jureczko M, Madeyski L, 2015. Cross–project defect prediction with respect to code ownership model: an empirical study. E-

Inform Softw Eng J. Volume 9(1), pp. 21–35.

[5] Hamill M, Goseva- Popstojanova K, 2014. Exploring the missing link: an empirical study of software fixes. Softw Test Verif

Reliab. Volume 24(5), pp. 49–71.

[6] Zhou Y, Xu B, Leung H, Chen L, 2014. An in-depth study of the potentially confounding effect of class size in fault prediction.

ACM Trans Softw Eng Methodol. Volume 23(1), pp. 1–51.

[7] Kaur A, Kaur K, Chopra D, 2016. An empirical study of software entropy based bug prediction using machine learning. Int J

Syst Assur Eng Manag. pp. 1–18.

[8] Jindal R, Malhotra R, Jain A, 2016. Prediction of defect severity by mining software project reports. Int J Syst Assur Eng

Manag. pp. 1–18.

[9] Catal C, Alan O, Balkan K, 2011. Class noise detection based on software metrics and ROC curves. Inf Sci. Volume 181(21),

pp. 4867–4877.

[10] Seiffert C, Khoshgoftaar TM, Hulse JV, Folleco A, 2014. An empirical study of the classification performance of learners on

imbalanced and noisy software quality data. Inf Sci. Volume 259, pp. 571–595.

[11] Hall T, Beecham S, Bowes D, Gray D, Counsell S, 2011. A systematic review of fault prediction performance in software

engineering. IEEE Trans Softw Eng. Volume 38(6), pp. 1276–1304.

[12] Boetticher G, 2006. Improving credibility of machine learner models in software engineering. In: Advanced machine learner

applications in software engineering, software engineering and knowledge engineering, pp 52–72.

[13] Schro¨ter A, Zimmermann T, Zeller A, 2006. Predicting component failures at design time. In: Proceedings of the 2006

ACM/IEEE international symposium on empirical software engineering. ACM, pp. 18–27.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

IJCRT1872021 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 148

[14] Kim S, Zimmermann T, Whitehead E, Zeller A, 2007. Predicting faults from cached history. In: Proceedings of the 29th

international conference on software engineering (ICSE), Minneapolis, 20–26 May.

[15] Jiang Y, Cukic B, Ma Y, 2008. Techniques for evaluating fault prediction models. Empir Softw Eng. Volume 13, pp. 561–595.

[16] Liebchen GA, Shepperd M, 2008. Data sets and data quality in software engineering. Proceedings of the 4th international

workshop on predictor models in software engineering (PROMISE ‘08). ACM, New York, pp. 39–44.

[17] Gray D, Bowes D, Davey N, Sun Y, Christianson B, 2011. The misuse of the NASA metrics data program datasets for

automated software defect prediction. In: Evaluation and assessment in software engineering (EASE).

[18] Gao K, Khoshgoftaar TM, Seliya N, 2012. Predicting highrisk program modules by selecting the right software measurements.

Softw Qual J. Volume 20(1), pp. 3–42.

[19] Al Dallal J, 2012. The impact of accounting for special methods in the measurement of object-oriented class cohesion on

refactoring and fault prediction activities. J Syst Softw. Volume 85(5), pp. 1042–1057.

[20] Shepperd M, Song Q, Sun Z, Mair C, 2013. Data quality: some comments on the NASA software defect datasets. IEEE Trans

Softw Eng. Volume 39(9), pp. 1208–1215.

[21] Petric´ J, Bowes D, Hall T, Christianson B, Baddoo N, 2016. The jinx on the NASA software defect data sets. In: Proceedings

of the 20th international conference on evaluation and assessment in software engineering (EASE). Article 13, 5 pages.

[22] Erni K, Lewerentz C, 1996. Applying design-metrics to object-oriented frameworks. In: Proceedings of the third international

software metrics symposium. Pp. 25–26.

[23] Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Bener A, 2010. Defect prediction from static code features: current results,

limitations, new approaches. Autom Softw Eng. Volume 17, pp. 375–407.

[24] Available at http://bug.inf.usi.ch [Accessed: July 15, 2017]

[25] Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten I, 2009. The WEKA data mining software, an update. Special

Interest Group Knowl Discov Data Min Explor Newsl. Volume11(1), pp. 10–18.

[26] Menzies T, DiStefano J, Orrego A, Chapman R, 2004. Assessing predictors of software defects. In: Predictive software models

workshop.

[27] Challagulla VU, Bastani FB, Yen I, Paul RA, 2005. Empirical assessment of machine learning based software defect prediction

techniques. In: Tenth IEEE international workshop on objectoriented real-time dependable systems, pp. 263–270.

[28] John GH, Langley P, 1995. Estimating continuous distributions in Bayesian classifiers. In: Besnard P, Hanks S (eds)

Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345.

[29] Aha D, Kibler D, 1991. Instance-based learning algorithms. Mach Learn. Volume 6(1), pp. 37–66.

[30] Wang H, Khoshgoftaar TM, Seliya N, 2011. How many software metrics should be selected for defect prediction? In: Murray

RC, McCarthy PM (Eds) FLAIRS Conference. AAAI Press, Palo Alto.

[31] Gao K, Khoshgoftaar K, Wang H, Seliya N, 2011. Choosing software metrics for defect prediction: an investigation on feature

selection techniques. Softw Pract Exp. Volume 41(5), pp. 579–606.

[32] Quinlan JR, 1993. C4.5: Programs for machine learning. Morgan Kaufmann Publishers, San Mateo.

[33] Mertik M, Lenic M, Stiglic G, Kokol P, 2006. Estimating software quality with advanced data mining techniques. In:

International conference on software engineering advances. p 19.

[34] Riquelme JC, Ruiz R, Rodrı´guez D, Moreno J, 2008. Finding defective modules from highly unbalanced datasets. Actas del

8_taller sobre el apoyo a la decisio´n en ingenierı´a del software. Volume 2(1), pp. 67–74.

[35] http://home.iitk.ac.in/~arunothi/pclub/ml/3.pdf. [Accessed: September 21, 2017]

[36] http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html. [Accessed: September 21, 2017]

[37] http://www.technology.heartland.edu/courses/Computer%20Science/Programming/Java%20Courses/JTest%20ser%27s%20

Guide/metnprim.htm. [Accessed: September 21, 2017]

[38] http://support.objecteering.com/objecteering6.1/help/us/metrics/metrics_in_detail/number_of_attributes.htm. [Accessed:

September 21, 2017]

[39] https://www.researchgate.net/post/How_do_I_measure_FAN-OUT_FAN-IN [Accessed: September 21, 2017]

[40] Raed Shatnawi, 2016. Identifying and eliminating less complex instances from software fault data. In: Int J Syst Assur Eng

Manag, Springer.

[41] Jianglin Huang, Yan-Fu Li, Min Xie, 2015. An empirical analysis of data preprocessing for machine learning-based software

cost estimation. Information and Software Technology. Volume (67), pp. 108-127.

[42] J. Wen, S. Li, Z. Lin, Y. Hu, C. Huang, 2012. Systematic literature review of machine learning based software development

effort estimation models. Inform. Softw. Technol. Volume (54) pp. 41–59.

http://www.ijcrt.org/
http://bug.inf.usi.ch/
http://home.iitk.ac.in/~arunothi/pclub/ml/3.pdf
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html
http://www.technology.heartland.edu/courses/Comput
http://support.objecteering.com/objecteering6.1/help/us/metrics/metrics_in_detail/number_of_attributes.htm
https://www.researchgate.net/post/How_do_I_measure_FAN-OUT_FAN-IN

